

# BTTM

*Codename: Flavona*

## Brake & Tire Temperature Monitor Product Manual

Version 1.9.1 - Release

January 2026

*Designed by Pietro Gambarin*

**Mullaloo Racing**  
*Embedded Motorsport Custom Solutions*

## Table of Contents

# 1. Introduction

The BTTM (Brake & Tire Temperature Monitor) is a comprehensive motorsport telemetry system designed to provide real-time temperature monitoring of brake rotors and tires during track sessions. The system enables drivers and engineers to optimize brake bias, tire pressures, and driving technique based on actual thermal data.

This system combines infrared temperature sensing, CAN bus networking, GNSS positioning, and wireless connectivity to deliver actionable data both during and after each session.

## 1.1 Key Features

- 8-node CAN bus network for temperature sensing (4 tires + 4 brakes)
- 50 Hz sampling rate per sensor (400 messages/second total)
- Real-time display with color-coded temperature visualization for driver
- WiFi web interface with live charts and statistics for pit crew
- 5 Hz GNSS positioning with speed tracking
- SD card data logging in CSV format
- Wide input voltage range (3-36V DC)

## 1.2 System Components

The BTTM system consists of two primary hardware components:

- **BTTM Central Unit:** The main controller with display, storage, and connectivity
- **IR CAN Node Sensors:** Eight distributed temperature sensors mounted at each wheel

## 2. System Architecture

The BTTM system uses a distributed architecture where eight IR CAN Node sensors communicate with a central controller over a CAN bus network. This design provides several advantages including reduced wiring complexity, noise immunity, and nearly endless expansion.

### 2.1 Network Topology

All eight IR CAN Node sensors connect to a shared CAN bus operating at 500 kbps. The central BTTM unit receives temperature data from each node and correlates it with GNSS position data for logging and display.

| Component         | Role                               | Communication                |
|-------------------|------------------------------------|------------------------------|
| BTTM Central Unit | Data aggregation, display, logging | CAN RX, WiFi AP, UART (GNSS) |
| IR CAN Node (x8)  | Temperature measurement            | CAN TX @ 50Hz                |
| MLX90614 Sensor   | IR temperature sensing             | I2C @ 100kHz                 |

### 2.2 Data Flow

Temperature data flows through the system as follows:

1. MLX90614 IR sensor measures object temperature via I2C
2. ESP32-C3 node encodes data as 16-bit signed integer (temp  $\times$  100)
3. CAN frame transmitted with unique message ID per sensor
4. BTTM central unit receives and decodes all 8 sensor streams
5. Data correlated with GNSS timestamp and logged to SD card
6. TFT display and web interface updated in real-time

## 3. Hardware Specifications

### 3.1 BTTM Central Unit

The BTTM central unit is based on the ESP32-S3 microcontroller with the following specifications:

| Parameter       | Specification                                  |
|-----------------|------------------------------------------------|
| MCU             | ESP32-S3-WROOM-2-N16R8 (16MB Flash, 8MB PSRAM) |
| Display         | 320×240 ILI9341 TFT (SPI @ 32MHz)              |
| GNSS Module     | u-blox NEO-M8M (5Hz update rate)               |
| CAN Transceiver | TCAN3413DR (500 kbps)                          |
| Power Regulator | MAX25223ATPB/VY+ (3.3V @ 3.5A)                 |
| Input Voltage   | 3-36V DC (automotive compatible)               |
| Storage         | MicroSD card (SPI @ 25MHz)                     |
| WiFi            | 2.4GHz 802.11 b/g/n (Access Point mode)        |
| Protection      | SMBJ18A TVS, MF-SMDF050-2 PTC fuse             |

#### 3.1.1 BTTM Pin Assignments

| GPIO   | Function      | Notes                      |
|--------|---------------|----------------------------|
| GPIO4  | CAN TX        | To TCAN3413 TXD            |
| GPIO15 | CAN RX        | From TCAN3413 RXD          |
| GPIO17 | GNSS TX       | ESP32 → NEO-M8 RX (Pin 21) |
| GPIO18 | GNSS RX       | NEO-M8 TX (Pin 20) → ESP32 |
| GPIO40 | TFT SCLK      | SPI Clock                  |
| GPIO41 | TFT MISO      | SPI Data In                |
| GPIO42 | TFT MOSI      | SPI Data Out               |
| GPIO14 | TFT CS        | TFT Chip Select            |
| GPIO47 | TFT DC        | Data/Command               |
| GPIO21 | TFT RST       | Display Reset              |
| GPIO10 | SD CS         | SD Card Chip Select        |
| GPIO48 | Heartbeat LED | Status indicator           |

## 3.2 IR CAN Node Sensors

Each IR CAN Node sensor is based on the ESP32-C3 microcontroller with an MLX90614 infrared thermometer:

| Parameter         | Specification                   |
|-------------------|---------------------------------|
| MCU               | ESP32-C3FH4 (RISC-V, 4MB Flash) |
| IR Sensor         | MLX90614 (I2C @ 100kHz)         |
| Temperature Range | -50°C to +400°C (object)        |
| Accuracy          | ±0.5°C (typical)                |
| CAN Transceiver   | TCAN3413DR (500 kbps)           |
| Update Rate       | 50 Hz (20ms interval)           |
| Operating Voltage | 3.3V (from CAN bus power)       |
| ESD Protection    | ESD2CAN24DCKRQ1 (24V TVS)       |

### 3.2.1 IR CAN Node Pin Assignments

| GPIO   | Function   | Notes             |
|--------|------------|-------------------|
| GPIO8  | I2C SDA    | MLX90614 Data     |
| GPIO9  | I2C SCL    | MLX90614 Clock    |
| GPIO3  | CAN TX     | To TCAN3413 TXD   |
| GPIO2  | CAN RX     | From TCAN3413 RXD |
| GPIO10 | Status LED | Health indicator  |

## 4. CAN Bus Protocol

### 4.1 Message IDs

Each sensor node transmits on a unique CAN message ID. The BTTM central unit filters and processes all messages in the defined ID range.

| CAN ID | Sensor Type | Position    | Description |
|--------|-------------|-------------|-------------|
| 0x451  | Tire        | Front Left  | TIRE_FL     |
| 0x452  | Tire        | Front Right | TIRE_FR     |
| 0x453  | Tire        | Rear Left   | TIRE_RL     |
| 0x454  | Tire        | Rear Right  | TIRE_RR     |
| 0x455  | Brake       | Front Left  | BRAKE_FL    |
| 0x456  | Brake       | Front Right | BRAKE_FR    |
| 0x457  | Brake       | Rear Left   | BRAKE_RL    |
| 0x458  | Brake       | Rear Right  | BRAKE_RR    |

### 4.2 Message Format

Temperature data is transmitted as a 2-byte CAN frame:

| Byte | Content   | Description                    |
|------|-----------|--------------------------------|
| 0    | High byte | Temperature $\times 100$ (MSB) |
| 1    | Low byte  | Temperature $\times 100$ (LSB) |

Example: A temperature of 125.5°C is encoded as:

- $125.5 \times 100 = 12550$  decimal = 0x3106
- Byte 0 (MSB) = 0x31
- Byte 1 (LSB) = 0x06

## 5. Software Features

### 5.1 TFT Display

The 320×240 TFT display provides a 4×4 grid layout showing all eight temperature readings with color-coded backgrounds:

| Temperature | Color              | Indication                         |
|-------------|--------------------|------------------------------------|
| ≤50°C       | Blue               | Cold / underutilized               |
| 51-100°C    | Green              | Optimal operating range            |
| 101-200°C   | Yellow/Orange      | Elevated - monitor closely         |
| 201-300°C   | Red                | High temperature warning           |
| >300°C      | Flashing Red/Black | Critical - reduce load immediately |

The display layout shows front sensors at the top and rear sensors at the bottom, with tire temperatures on the outside columns and brake temperatures on the inside columns.

### 5.2 Web Interface

The WiFi web interface provides comprehensive monitoring and analysis capabilities:

- **Real-time temperature cards for all 8 sensors**
- **Live scrolling graphs with selectable time ranges (10s/20s/60s/120s)**
- **Individual sensor line visibility toggles**
- **Statistics tables (average, min, max, standard deviation)**
- **GNSS data display (satellites, speed, position, PDOP)**
- **SD card log file browser with download capability**
- **System reboot control**

### 5.3 SD Card Logging

Data is logged to CSV files on the SD card at 5 Hz (synchronized with GNSS updates). Each log file contains:

| Column             | Description                       |
|--------------------|-----------------------------------|
| Date               | YYYY-MM-DD format from GNSS       |
| Timestamp          | HH:MM:SS.mmm from GNSS            |
| BrakeFR/FL/RR/RL   | Brake temperatures (°C)           |
| TireFR/FL/RR/RL    | Tire temperatures (°C)            |
| Latitude/Longitude | GNSS position (decimal degrees)   |
| SpeedKPH           | Ground speed (km/h)               |
| Satellites         | Number of GNSS satellites in view |
| PDOP               | Position Dilution of Precision    |

## 6. Installation Guide

### 6.1 Wiring Connections

The CAN bus uses a 4-wire connection to each sensor node:

| Wire | Color (Suggested) | Function                    |
|------|-------------------|-----------------------------|
| +    | Red               | 3.3V Power (from BTTM unit) |
| -    | Black             | Ground                      |
| H    | Yellow            | CAN High (CANH)             |
| L    | Green             | CAN Low (CANL)              |

### 6.2 Sensor Mounting

1. Mount tire sensors to aim at the tire sidewall or tread surface, approximately 50-100mm from the tire
2. Mount brake sensors to aim at the brake rotor through the wheel spokes, if possible
3. Ensure sensors have clear line-of-sight to the measurement surface
4. Protect sensor wiring from wheel rotation and suspension movement
5. Use heat-resistant sleeving near brake components

### 6.3 CAN Bus Termination

The CAN bus requires  $120\Omega$  termination resistors at each end of the bus. The BTTM central unit includes a switchable termination resistor. If using a daisy-chain topology, enable termination at both ends of the chain.

## 7. Configuration

### 7.1 IR CAN Node Configuration

Each IR CAN Node must be programmed with its unique channel assignment. Edit the following line in the firmware before flashing:

```
static const Channel THIS_NODE_CHANNEL = TIRE_FL;
```

Valid channel values:

- TIRE\_FL, TIRE\_FR, TIRE\_RL, TIRE\_RR (for tire sensors)
- BRAKE\_FL, BRAKE\_FR, BRAKE\_RL, BRAKE\_RR (for brake sensors)

### 7.2 WiFi Configuration

The BTTM WiFi credentials are configured in the firmware:

```
const char* ssid = "YourNetworkName";  
const char* password = "YourPassword";
```

After connecting to the WiFi network, access the web interface at the IP address displayed on the TFT screen.

## 8. Troubleshooting

### 8.1 IR CAN Node LED Indicators

The status LED on each IR CAN Node indicates the current health state:

| Pattern                       | State           | Meaning                         |
|-------------------------------|-----------------|---------------------------------|
| Brief pulse (3ms/497ms)       | <b>HEALTHY</b>  | Normal operation                |
| Slow blink (50ms/150ms)       | <b>DEGRADED</b> | Some failures detected          |
| Fast blink (100ms/100ms)      | <b>CRITICAL</b> | Multiple failures or bus errors |
| Very fast blink (200ms/200ms) | <b>HALTED</b>   | CAN bus initialization failed   |

### 8.2 Common Issues

#### No temperature readings displayed:

- Check CAN bus wiring (CANH to CANH, CANL to CANL)
- Verify 120Ω termination at bus ends
- Confirm sensor nodes are powered (3.3V present)

#### Erratic or noisy readings:

- Check for damaged lenses on IR sensors
- Verify sensor is aimed correctly at target surface
- Shield wiring from electromagnetic interference sources

#### GNSS not acquiring fix:

- Ensure clear sky view for the antenna (or BTTM enclosure)
- Wait up to 60 seconds for cold start acquisition
- Check UART connections (GPIO17 TX, GPIO18 RX)

## 9. Technical Specifications Summary

| Parameter                         | Value                |
|-----------------------------------|----------------------|
| <b>Number of Sensors</b>          | 8 (4 tire + 4 brake) |
| <b>Temperature Range</b>          | -50°C to +400°C      |
| <b>Temperature Resolution</b>     | 0.01°C               |
| <b>Sensor Update Rate</b>         | 50 Hz per sensor     |
| <b>Total CAN Bandwidth</b>        | 400 messages/second  |
| <b>CAN Bus Speed</b>              | 500 kbps             |
| <b>GNSS Update Rate</b>           | 5 Hz                 |
| <b>SD Logging Rate</b>            | 5 Hz                 |
| <b>Display Refresh Rate</b>       | 4 Hz                 |
| <b>Web Interface Update</b>       | 2 Hz                 |
| <b>Input Voltage Range</b>        | 3-36V DC             |
| <b>BTTM Operating Temperature</b> | -20°C to +85°C       |

## 10. Revision History

| Version | Date      | Changes                                                                          |
|---------|-----------|----------------------------------------------------------------------------------|
| v1.9.1  | Dec 2025  | Second field test release – Corrected Brakes IDs from 0x461–0x464 to 0x455-0x458 |
| v1.9.0  | Nov 2025  | First field test release - GNSS pin fix, optimized task stacks, cleaned code     |
| v1.8.1  | Oct 2025  | New TFT layout with inverted rear row, WiFi status display                       |
| v1.7.12 | Sept 2025 | Time range selection, individual sensor line toggles, web UI improvements        |

— *End of Document* —